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phenomenological model. The advantage of this improvised model is the ability to predict the volume

plasmon energy for low dimensional materials, literally free from any arbitrarily adjustable parameters.
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The influence of size and dimension on the volume plasmon energy of nanomaterials is examined, and

the effect of band-gap variation and lattice contraction is explicitly included in our improvised

We find that the volume plasmon energy increases almost exponentially with decreasing size and this

increase is shown to be the most evident for nanoparticles, as compared to nanowires and nanofilms of

the same material. This is largely due to the variation in the surface/volume ratio with dimension

modulation. More importantly, our improvised model outperforms other reported ones, bringing our

predicted results closest to available experiments. In particular, for semiconducting/semi-metal

nanoarchitectures, we demonstrate that the rapid increase in volume plasmon energy of nanomaterials

is a direct consequence and interplay of band-gap variation and lattice contraction.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Nanostructured materials have attracted a lot of attention for
the past decade or so [1,2], largely due to the fact that their size-
dependent material properties (e.g., their electronic, magnetic,
optic, catalytic, mechanical and thermodynamic properties)
are significantly different from those of either extreme size
(i.e., either in their bulk or their atomic/molecular counter-
parts) [1]. Deriving a ‘‘design-rule’’ to control and tune such
material properties will be highly desirable for new modern
technologies. Given that the differences seen in nanomaterial’s
characteristics essentially arise from an increase in the surface/
volume ratio (A/V), we can try to express this dependence in
many such properties, to have the form of 1/D, where D denotes
the size of the nanostructure. To add complexity to this depen-
dence, many nanomaterial’s characteristics are also greatly influ-
enced by the dimension, d of the nanomaterial, e.g., showing a
dependence on the diameter of nanoparticles and nanowires or
the thickness of nanofilms. In this letter, we seek to explore both
the size- and dimension-dependence of the volume plasmon
energy, Ep(D,d), for semiconducting nanomaterials.

For an infinite solid, volume plasmons can be thought of as
compressional electron oscillations of the free electron gas
density, often in the presence of an external perturbation (e.g.,
an electric field) [3]. From electron energy loss spectroscopic
ll rights reserved.
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(EELS) studies, in particular for semiconductors, the volume
plasmon energy peak is distinctively separated from that of so-
called surface plasmons (which are plasma oscillations that are
restricted to surface-region), even for very small semiconducting
nanostructures where A/V becomes appreciable [4]. This allows
one to study the variation of the volume plasmon energy peak,
which reflects the band gap widening in ultra-small, nano-sized
semiconducting materials, as a function of its size and dimension
[5–8]. Given that the volume plasmon in semiconductors is
thought to be closely related to the oscillator strength of inter-
band transition beyond the band-gap (Eg), having a size- and
dimension-dependent description of a material’s volume plasmon
could then provide us with some desirable information about its
electronic structure near the Eg [9]. Once armed with this
fundamental knowledge, it will allow us to design a wide range
of practical applications of nanostructured semiconductors, cov-
ering from nanoplasmonics technology to nanolasers [10–13].
Specifically, it has already been shown that in some early
experimental results, a blueshift of Ep occurs with decreasing size
(D), namely, Ep(D)4Ep(N), where N denotes the bulk regime
[5–8]. It was thought that this blueshift of the energy is associated
with changes made to the dispersion relation of the volume
plasmon [8] with decreasing size. Therefore, in this letter, we
aim to provide an improvised phenomenological (and theoretical)
model to investigate Ep(D,d), the size- and dimension-dependent
volume plasmon energy of semiconducting nanomaterials.

In order to understand size(only)-dependent volume plasmon
energy, Ep(D), different theoretical approaches have been pro-
posed in literature [5,9,14–16]. Unfortunately, a comprehensive
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theoretical model providing a quantitative relationship between
D and the Ep(D) shift is presently not well developed and this calls
for a more in-depth study [5]. For example, Mitome et al.
introduced an approximated function for the Ep(D) shift. It
considered that Ep(D) increases in proportion to the inverse
square of the size, namely Ep(D)p1/D2 and is thought to be
caused by an increase in Eg(D) [9]. However, it was later found
that by fitting to experimental results, the exponent may now
take values from 0.83 to 1.32 [5,15]. In addition, Sanchez et al.
also considered that the changes of Ep(D) to be solely dependent
on lattice contraction [16]. while Yamada et al. attributed the
blueshift of Ep(D) to the common effect of Eg(D) variation and
lattice contraction [14]. All of the above mentioned approaches
either contain some arbitrarily adjusted parameters or simply
provide only a qualitative analysis. At this point, we would also
like to point out that, to date, the dimension-dependence of Ep has
not been addressed for nanomaterials with different dimensions
(d), Ep(d) and it may present a different behavior as compared
to Ep(D) [5,14]. Thus we deem it necessary and important to
establish a quantitative (rather than just qualitative) model to
predict the effect of both D and d on the volume plasmon energy,
Ep(D,d) and then attempt to explain the physical origin of the
blueshift seen for Ep in experiments.
Table 1
The relevant data used in the calculations of Eq. (7).

h(nm) vs(cm3/g atom)

[22]

Hm(KJ/g atom)

[22]

Svib(J/g atom K)

[23]

k(10�10 Pa�1)

Ge 0.245a 13.64 36.94 4.62 0.768 [22]

Si 0.235a 12.06 50.55 6.72 0.306 [22]

Bi 0.407

[20]

21.3 11.3 3.78 0.330 [20]

a h¼O3a/4 for the diamond structure with a¼0.566 nm for Ge and 0.543 nm

for Si [22].
2. Model

According to the nearly free electron model, Ep(N) can be
expressed as follows [17].

EPð1Þ ¼ _
f ne2

e0m0

� �1=2

ð1Þ

where _, f, n, e, e0 and m0 are the Planck constant, the oscillator
strength of each valence electron for the excitation, the valence
electron density, the elementary charge, the permittivity of free
space and the real mass of an electron, respectively. From these
parameters mentioned above, the only ones found to be material-
dependent are only f and n. Thus, in order to further establish a
theoretical description to explain the experimental results (i.e., to
determine the Ep(D,d)), the size and dimension effect on f(D,d) and
n(D,d) has to be addressed.

From quantum mechanics [9], f(N) can be expressed as,

f ð1Þ ¼
2m0Egð1Þ

e2_2
9doc9

2
ð2Þ

where doc is an atomic dipole matrix element for the excitation
and it could be considered as a size-independent parameter [9].
Thus f is then taken to be proportional to Eg and thus generalizing
the proportionality relationship to include both size and dimen-
sion dependence, it reads.

f ðD,dÞ

f ð1Þ
¼

EgðD,dÞ

Egð1Þ
ð3Þ

Now, from our previous work on Eg(D,d) [18], we can rewrite
Eq. (3) formally as,

f ðD,dÞ

f ð1Þ
¼

EgðD,dÞ

Egð1Þ
¼ 2�exp �

2Svibð1Þ

3R½D=2ð3�dÞh�1�

� �
ð4Þ

Where Svib(N) is the bulk vibrational melting entropy and R is the
ideal gas constant. h is bond length and d¼0 for nanoparticles,
d¼1 for nanowires and d¼2 for nanofilms [19]. n is then
determined by the electron density of the atoms and the lattice
parameter [16]. For a fixed amount of matter, we may take the
electron density of the atoms as a constant and size-independent
[16]. Again, generalizing the proportionality relationship to
include both size and dimension dependence, n(D,d) is inversely
proportional to the respective volume, v(D,d), and can thus be
expressed as [1,14],

nðD,dÞ

nð1Þ
¼

vð1Þ

vðD,dÞ
¼

1

1þ3 DaðD,dÞ
að1Þ

ð5Þ

where a is the lattice constant, and with Da(D,d) defined as the
corresponding change in a(N). It has been established by Jiang
et al. [20] that the size-dependent fractional change in the lattice
parameter DaðD,dÞ

að1Þ can be written as,

DaðD,dÞ

að1Þ
¼ 7

2

3D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kð3-dÞh2Svibð1ÞHmð1Þ=ðRVsÞ

q
ð6Þ

where k is the compressibility modulus of the material, Hm(N)
being the melting enthalpy of bulk crystals, respectively, and
where the positive (negative) sign denotes the positive (negative)
stresses induced by lattice expansion (contraction) [21].

Combining Eqs. (4), (5) and (6) with Eq.(1), the complete
expression of Ep(D,d) which now depends on both the dimension
and size, can then be written as,

EpðD,dÞ

Epð1Þ
¼ 2�exp �

2Svibð1Þ

3R D
2ð3�dÞh�1
h i

2
4

3
5
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3. Results and discussion

For all nanostructures considered in this letter, the relevant
data used in the calculation of Eq. (7) are listed in Table 1. Fig. 1
shows the comparisons between the model prediction in terms of
Eq. (7) (labeled as the solid line 1) and experimental results and
other theoretical calculations for Ep(D,d) of Ge nanoparticles (in
Fig. 1a) and nanowires (in Fig. 1b). As shown in Fig. 1, Ep(D,d)
increases with a corresponding decrease in size and a dramatic
increase in Ep(D,d) is observed for the size range of D420 nm.
Beyond D420 nm, Ep(D,d) decreases rather gently until it
approaches the bulk value for large D. This trend can be easily
explained that, with the reduction of D, more atoms are found to
be located on the surface and thus, A/V increases with decreasing
D. With the increasing of A/V, an increase in Eg(D,d) [18]. coupled
with a lattice contraction [20,21] is found. Both the increase in
Eg(D,d) and lattice contraction will then modify the volume
plasmon dispersion relations, causing the observed blueshift of
Ep(D,d) [9,14,16]. To illustrate the individual effects of the two
factors outlined above, we show in Fig. 1a and b the dashed lines
(labeled as ‘2’) as the variation of Ep(D,d) under the sole influence
of increasing Eg(D,d), and the dot lines (labeled as ‘3’) as that of
Ep(D,d) under the sole influence of lattice contraction. We can
clearly see that if one is to consider these two effects separately,



Fig. 1. Comparison of Ep(D,d) between our prediction, using Eq. (7) (labeled as

solid line ‘1’) and other experimental and theoretical calculations denoted as

dashed lines ‘2’ [9] and dotted lines ‘3’ [16], respectively. (a) For Ge nanoparticles,

D0¼6h¼1.47 nm with d¼0 and Ep(N)¼15.45 [5]. The symbol K represents the

experimental results from Ref. [14](b) For Ge nanowires, D0¼6h¼0.98 nm with

d¼1. Other related parameters are listed in Table 1. The symbol ’ represents the

experimental results from Ref. [5]. The insertion plot illustrates the trend of

Ep(D,d) shift in Ge nanostructures of different dimensions.

Fig. 2. Comparison between our predicted values using Eq. (7) and available

experimental results for Ep(D,d) of Si and Bi nanoparticles. The solid lines denote

our predicted values, while the symbols are the corresponding experimental

results. D0¼6 h¼1.41 nm and 2.44 nm with d¼0 for (a) Si and (b) Bi nanopar-

ticles. The symbols m and . denote the experimental results for Si [15] and Bi [8],

respectively.
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the Ep(D,d) variations are much smaller than that observed in
experiments, while our improvised model (cf. Eq. (7)) which now
takes both factors into consideration simultaneously, shows a
much better agreement, especially for D420 nm. Thus, it is now
evident that, from our model predictions, the observed blueshift
of Ep(D,d) is caused by both an increase in Eg(D,d) and its
correlated lattice contraction effect.

Moreover, to illustrate this variation for Ge nanostructures
with the same size but of different dimension, we find that the
increase in Ep(D,d) is more dramatic for nanoparticles (with d¼0)
than that of nanowires (with d¼1). For Ge nanostructures of
D¼10 nm, Ep(10 nm,0) is predicted to be 16.25 eV [14] for
nanoparticles while Ep(10 nm,1) is found to be 15.91 eV [5] for
nanowires, respectively. These differences could be attributed to
the different A/V¼6/D, 4/D, 2/D for nanoparticles, nanowires and
thin nanofilms with d¼0, 1, 2, respectively. In Fig. 1b, the inserted
graph illustrates this shift in the Ep(D,d) variation for nanostruc-
tures of Ge with different dimensions. From top down, the three
lines represent Ep(D,d) function for nanoparticles (d¼0), nano-
wires (d¼1) and nanofilms (d¼2), respectively, which very nicely
illustrates the dimension effect on Ep(D,d).

To highlight the universality of our improvised model (cf. Eq.
(7)), we also show in Fig. 2 the excellent agreement between our
predicted values and experimental results for Ep(D,d) of Si and Bi
nanoparticles. The consistency seen in both Figs. 1 and 2 clearly
demonstrates that our model adequately (and quantitatively)
describes the volume plasmon energy, Ep(D,d) as a function of
both dimension and size, and now clarifies that the physical
origin of the observed blueshift of Ep(D,d) in experiments is an
interplay of an increase in Eg(D,d) coupled to a lattice contraction
effect.
4. Conclusions

Size and dimension effect on Ep(D,d) is modeled without any
adjustable parameter. It predicts that Ep(D,d) increases as D

dropping and size effect on Ep(D,d) of wires is weaker than that
of nanoparticles and stronger than thin films due to the different
A/V. The consistency of model prediction with experimental
evidences for Ep(D,d) confirms the origin of the blueshift of Ep(D,d)
is the interplay of Eg(D,d) expansion and lattice contraction.
Acknowledgments

The authors acknowledge the financial supports of the
National Natural Science Foundation of China under (Grant No.
51101067), Korea Institute of Science and Technology (KIST)
(Contract No. 2E22121), National Research Foundation of Korea
(NRF) (Grant No. 2011-0013201), Natural Science Foundation of
Anhui Higher Education Institutions of China (No. KL2012B159),
Open Foundation of Key Laboratory of Automobile Materials of
the Ministry of Educations, Jilin University and Huaibei Normal
University (No. 700435). R. Q. Zhang acknowledges the Second
Stage of Brain Korea 21 Project (Division of Humantronics
Information Materials) for funding.

References

[1] C.Q. Sun, Prog. Mater. Sci. 54 (2009) 179–307.
[2] I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J.C. Martins,

F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, Z. Hens, ACS Nano 3 (2009)
3023–3030.

[3] V.B. Gildenburg, V.A. Kostin, I.A. Pavlichenko, Phys. Plasmas 18 (2011)
092101.

[4] P.N.H. Nakashima, T. Tsuzuki, A.W.S. Johnsona, J. Appl. Phys. 85 (1999)
1556–1559.

[5] T. Hanrath, B.A. Korgel, Nano Lett. 4 (2004) 1455–1461.
[6] Y.W. Wang, J.S. Kim, G.H. Kim, K.S. Kim, Appl. Phys. Lett. 88 (2006) 143106.
[7] Y. Wang, J.-S. Kim, J.Y. Lee, G.H. Kim, K.S. Kim, Chem. Mater. 19 (2007)

3912–3916.
[8] N. Jiang, D. Su, J. Spence, S. Zhou, J. Qiu, Solid State Commun. 149 (2009)

111–114.
[9] M. Mitome, Y. Yamazaki, H. Takagi, T. Nakagiri, J. Appl. Phys. 72 (1992)

812–814.
[10] S.A. Majer, Plasmonics: Fundamentals and Applications, Springer, New York,

2007.
[11] M.L. Brongersma, P.G. Kik, Surface Plasmon Nanophotonics, Springer Series in

Optical Sciences, Springer, New York, 2007.
[12] D. Bergman, M. Stockman, Phys. Rev. Lett. 90 (2003) 027402.
[13] M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov,

S. Stout, E. Herz, T. Suteewong, U. Wiesner, Nature 460 (2009) 1110–1112.
[14] S. Yamada, J. Appl. Phys. 94 (2003) 6818–6821.
[15] H. Nienhaus, V. Kravets, S. Koutouzov, C. Meier, A. Lorke, H. Wiggers,

M.K. Kennedy, F.E. Kruis, J. Vac. Sci. Technol., B 24 (2006) 1156–1160.
[16] A.M. Sanchez, R. Beanland, A.J. Papworth, P.J. Goodhew, M.H. Gass, Appl.

Phys. Lett. 88 (2006) 051917.
[17] D. Pines, Elementary Excitations in Solids, Benjamin, New York, 1963.
[18] M. Li, J.C. Li, Mater. Lett. 60 (2006) 2526–2529.
[19] Q. Jiang, H.X. Shi, M. Zhao, J. Chem. Phys. 111 (1999) 2176–2180.
[20] L.H. Liang, J.C. Li, Q. Jiang., Phys. B 334 (2003) 49–53.
[21] Q. Jiang, L.H. Liang, D.S. Zhao, J. Phys. Chem. B. 105 (2001) 6275–6277.
[22] R.C. Weast, CRC Handbook of Chemistry and physics, 70th ed., CRC Press,

Florida, 1989.
[23] A.R. Regel, V.M. Glazoy, Semiconductors 29 (1995) 405–417.


	Size and dimension effect on volume plasmon energy of nanomaterials
	Introduction
	Model
	Results and discussion
	Conclusions
	Acknowledgments
	References




