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Based on the consideration on size-dependent temperature Tm(D) where D denotes the diameter of 

nanoparticles and nanowires or the thickness of thin films, the size-dependent band-gap ∆Eg(D) and 

dielectric constant ε(D) of low dimensional materials are modeled without any adjustable parameter. 

The model predicts an increase of the band-gap and a decrease of dielectric constant with drop of Si 

nanocrystals’ size. The predicted results correspond to experimental and computer simulation results 

of Si nanocrystals. 
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1.  Introduction 

With the size reduction, the physical properties of nanocrystals will change dramatically, 

which has led to new technological applications of media with tunable properties. With the 

decreasing of D where D denotes diameter of nanoparticles, or diameter of nanowires or 

thickness of thin films, the most common findings of Si nanocrystals are (1) the increase of 

the band-gap Eg (D) which is an important parameter in dealing with the semiconductors 

and (2) drastic reduction in dielectric constant ε(D). The physics and chemistry of a 
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material are notably altered on changing Eg (D), as much of the materials’ behavior 

depends on it. Reduction in ε(D) causes an increase in Coulomb interaction energy 

between electrons, holes and ionized impurities, and therefore can significantly modify the 

optical absorption and transport phenomenon of nanometric device.
1
  

It was found that Eg and ε values are functions of D
2-9

 and ε(D) function is related to the 

Eg (D) function. Once Eg (D) function is known, ε(D) function is also can be determined. 

Therefore, it is important to determine Eg (D) function. In order to understand the 

size-dependent band-gap, different theoretical approaches have been adopted and it can be 

described as ∆Eg(D) = Eg(D)-Eg(∞) where ∞ and ∆ denote the bulk size and the change. 

However, most of them are exact only when D > 10 nm.
10-14

 Thus, it is necessary to 

establish a quantitative model, which is applicable in a full size range of Si nanocrystals. 

In this contribution, a simple equation without any parameters is developed to predict 

the size-dependent band-gap ∆Eg(D) and the model that is established is extended to 

predict the size effect on ε(D) of Si films. The model predictions agree well with known 

experimental and computer simulation results. 

2.  Model 

According to the Arrhenius relationship, 

σ(D,T) = cexp[Q(D)/(kBT)].                                           (1) 

where c denotes a pre-exponential coefficient, Q(D) is the size-dependent activation 

energy for electrical migration for nanocrystal, kB is Boltzmann′s constant and T is absolute 

temperature.
15

 According to Eq. (1), there is σ(D,T)/σ(∞,T) = exp{[Q(D)-Q(∞)]/(kBT)}, 

where the coefficient c is assumed to be a size-independent amount. As presented in Ref. 

16, σ(D,T) = cexp[-Eg(D)/(2kBT)] for semiconductors. Considering the relationship above, 

σ(D,T)/σ(∞,T) = exp{[Q(∞)-Q(D)Eg(∞)-Eg(D)]/(kBT)} where ∆Eg(D) = 2[Q(∞)-Q(D)]. 

Let D0 represent the critical diameter at which all atoms of low-dimensional material are 

located on it′s surface, there is,
 17

 

                                                            D0 = 2(3-d)h .                                                          (2) 

where d and h denote the dimension and the atomic diameter and d = 0, 1 and 2 for particles, 

wires and films, respectively. It is clear, as D approaches D0, Q(D) = 0 and ∆Eg(D) = Eg(∞) 

since Eg(∞) = 2Q(∞),
16

 the following expression can be gotten, 
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It is known that
18

 σ[D,Tm(D)] = σ[∞,Tm(∞)] where Tm is the melting temperature. 

Taking this consideration into Eq. (1), σ[D,Tm(D)]=cexp{−Q(D)/[kBTm(D)]}= 

cexp{−Q(∞)/[kBTm(∞)]}. Thus,  

 )(/)()(/)( ∞=∞ mm TDTQDQ .                                           (4) 

As it has been established that the size-dependent Tm(D) function has the following 

form,
17
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Svib(∞) is the bulk vibrational melting entropy and R is the ideal gas constant. 

Accdoding to Eqs.(3), (4) and (5), the size-dependent bandgap can be gotten,  
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According to Tsu et al
19

 related the dielectric susceptibility (χ = ε-1) change ∆χ(D)/ 

χ(∞)=-2∆Eg(D)/ Eg(∞),the size-dependent dielectric constant can be found, 
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3.  Results and Dscussion 

Comparisons between the model predictions in term of Eq. (6) and the experimental and 

other simulant results for ∆Eg (D) values of Si nanoparticles and wires are shown in Fig. 1. 

It implies that ∆Eg (D) increases with the decreasing size. The predictions are in good 

agreement with the experimental results in full size range of Si nanocrystals. Note that 

there exists a little deviation, which could be partly induced by measuring uncertainties of 

∆Eg(D) values. Furthermore, the change of ∆Eg(D) function of wires with D is weaker than 

that of nanoparticles. These differences should be attributed to the different 

surface/volume ratios A/V = 4/D, 6/D for wires and nanoparticles with d = 1, 0, 

respectively. 
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Fig. 1.  ∆Eg(D) functions of Si nanoparticles and wires. The solid lines denote the model predictions in terms 

of Eq. (6). For Si wires shows in Fig. 1. a. D0 = 4h = 0.94 nm in terms of Eq. (2) with d = 1 and other related 

parameters are listed in table 1. The symbol ■2, ○3 and ○4 is the corresponding simulation result. Si particles 

shown in Fig. 1. b, D0 = 6h = 1.41 nm in terms of Eq. (2) with d = 0 is used. ∆Eg(D) for ▲5, ▼6 and ●7 denote the 

corresponding experimental results. 
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Table 1.  Necessary parameters used in Eqs. (6) and (7). 

 Eg(∞) (eV) ε(∞) Svib(Jg-atom-1K-1) h (nm)a 

Si 1.121 11.420 6.7221 0.235 

a
 h =√3a/4 for the zinc blende structure with the lattice constant a = 0.543nm nm for Si.

22
 

Fig. 2. shows the comparisons between the model predictions in term of Eq. (7) and the 

experimental and other theoretical results for ε(D) values of Si films. It predicts that ε(D) 

function decreases as D decreases. The model prediction corresponds to the theoretical and 

the experimental evidences. 
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Fig. 2.  ε(D) function of Si films. The solid line denotes the model prediction in terms of Eq. (7) where D0 = 2h = 

0.47 nm with d =2 in terms of Eq. (2). The ε(D) for ■8, ●, ○ and ▼9 denote the corresponding simulation and 

experimental results. 

Considering the mathematical relation of exp (-x) ≈ 1-x when x is small enough as a 

first order approximation, Eqs. (6) and (7) can be rewritten as, 

 

∆Eg(D)/Eg(∞) ≈ 2∆SvibD0/3RD .                             (8-1) 

 (ε(D)-1)/(ε(∞)-1) ≈ 1-2∆SvibD0/3RD.                        (8-2) 

Hence ∆Eg(D)/ Eg(∞)= C/D and (ε(D)-1)/(ε(∞)-1)=1- C/D  where C = 2∆SvibD0/3R. The 

change of ∆Eg(D)and ε(D) functions indicate that the most important size effect for 

low-dimensional materials is related with the surface/volume radio, namely 1/D. This is 

also consisted with other results. 

According to Eq. (8-1), it also can be found that, 

∆Eg(D)wire / ∆Eg(D)particle = D0wire/ D0particle = 0.67.                     (9) 

∆Eg(D)wire and ∆Eg(D)particle are size-dependent of nanowire and nanopaticles’ band-gap 

and D0wire and D0particle are their critical diameters, respectively. The same value also can be 

found in Nanda′s work.
23

 As shown in these figures, the complicated ∆Eg(D) and  ε(D) 
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functions can be analyzed and predicated by using this simple model without any free 

parameter as long as the relative thermodynamic parameters are known. 

4.  Conclusion 

In summary, simple and unified models for the size-dependent band-gap and  dielectric 

constant of Si nanocrystals have been established. They predicate that the band-gap 

increases with the decreasing size and the dielectric constant decreases as D droping. The 

predicted results are consistent with the available experimental and computer simulation 

results. 
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